boehlerit

Thread rolling systems

Rolling attachments, re-defined

Boehlerit is extending its product portfolio and has found a competent partner for advice on and application of profile and thread rolling heads as well as the design of customer-specific, purpose-built models of axial and tangential rolling systems in Adam Rollsysteme GmbH.

In the aerospace industry, for instance, machining is considered an undesirable processing method due to the associated destruction of the milling fibres. With rolling, the desired profile is pressed into the material beyond the stress-strain limit.

The Adam axial and tangential rolling systems by Boehlerit offer not just the shortest cycle times, long tool life, perfect surface qualities and outstanding precision, but are also highly economical as they reduce the amount of material used. The Adam axial rolling systems cover a working range of 1.4 to 100 mm and are primarily used on turning and milling centres to process threads and profiles. The tangential rolling systems, on the other hand, are ideal for manufacturing extremely short threads, threads with very short runouts, knurls and smaller gears. The working range lies at 1.6 to 42 mm, with a roll width of 15.5 to 31 mm.

With every Adam tangential rolling system, Boehlerit supplies customised rolling head holders for fitting the rolling head to the tooling machine. With these rolling systems, the Kapfenberg-based company offers a wide range of tool solutions that will suit most application scenarios.

BOEHLERIT Kapfenberg in Styria/Austria

Technical changes or misprints excepted.

Adam axial rolling systems

The broad working range of the individual rolling head types is made possible by the simple and fast exchange process for the rolls. As a next step, other cold forming processes such as smoothing, milling and beading can also be performed. The axial rolling heads may be used in stationary or rotating applications. The axial rolling head is locked by radial turning of the locking handle or by means of an optional, automated locking mechanism. The rolling head opens by stopping the infeed and the rolls release the workpiece. Depending on the design, the axial rolling head is equipped with 2, 3 or in some cases even 6 thread rolls, which are used on a set-by-set basis. The axial rolling systems may be used for short and long threads.

High-precision thread rolls:

The thread rolls are adapted to the profile to be manufactured in terms of diameter, shape and flank lead and constitute the forming tool. Different shaft variations are available for different machines.

Right-hand as well as left-hand threads may be produced just as easily as regular threads, fine threads, pipe threads, trapezoidal threads and special threads.

Benefits:

- Broad working ranges
- Rotating and stationary for use on machining centres, turning lathes, automatic rotary indexing machines and special-purpose machines
- Machining of parts with long threads
- Self-opening by means of infeed stop for touch-free return travel
- Reproducible manufacturing results

A wide roller programme is available. The dimensional accuracy of the rolled threads is guaranteed for materials of up to a maximum tensile strength of 1400 N/mm².

Stationary thread rolling head:

The Adam thread rolling head in a stationary design was developed for use with rotating workpieces. The opening of the thread end may be performed by means of an infeed stop of the machine or by limiting the infeed with an internal stop.

The closing process may be performed either manually or with suitable locking devices for automated locking.

Rotating thread rolling head:

The Adam thread rolling head in a rotating design was developed for use with stationary workpieces. The rotating axial rolling heads follow the same principle as the stationary models. Just like the stationary model, the rotating axial rolling head remains locked and continues to machine your thread until either the machine infeed is stopped or the workpiece reaches the pre-set internal stop. This process also pulls the rotary axial rolling head out of its coupling stage, thereby opening it. The thread rolls will turn away from the surface of the workpiece over their eccentric cams. The backwards movement of the rolling head to detach it from the workpiece is controlled by the tooling machine.

To prepare the axial rolling head for the next rolling process, the rotating version must also be locked. Again, this may be done effectively and comfortably using automatic locking devices. Their function is controlled by the tooling machine and activated by pressurised air or cooling agent.

Adam axial rolling systems

Adam axial rolling systems may be used on all standard tooling machines, for instance on CNC machining centres, manual tooling machines and in straightforward applications such as stationary drilling machines and boring mills. Set-up on your tooling machine is quick, easy and flexible for all applications.

The quality of the manufactured threads as well as the tool life of Adam rolling systems and their thread and profile rolls are the most important arguments in our favour when compared to cutting tools. These advantages result in extremely short set-up and downtimes as well as in fast cycle times during the production process of your threads and profiles. Adam rolling systems also come with the option of cost-effective locking mechanisms, which further reduce cycle times and make for an even faster and more comfortable set-up.

Shank design

Typ A: Stationary use (e. g. "A 12") Typ AG: Stationary and rotating use (e. g. "A 12 G"), for left-hand threads: additional "L" (e. g. "A 12 L") Flange design

Stationary and rotating use

Shank design

Overview of axial rolling systems - types and sizes

Flange design

Rolling head system - size	Working	range	D -	shaft	D - housing		
			Diameter	- Standard	Diameter -	Standard	
	from mm	to mm	mm	Zoll	mm	Zoll	
A 0	2,6	5,5	20	3/4"	50	1,9680	
A 001	2,6	4,0	20, 16	3/4"	40	1,5748	
A 01	3,5	6,0	20, 16	3/4"	40	1,5748	
A 1	6,0	11,0	20, 16	3/4"	64	2,5196	
A 12 jan	6,0	12,0	20, 16	3/4"	64	2,5196	
A 12 A 1223 A 2 Shank design	5,0	8,0	20, 16	3/4"	56	2,2047	
A 2 Shan	8,0	16,0	25	1"	88	3,4645	
A 23	8,0	22,0	25	1"	88	3,4645	
A 233400	16,0	36,0	30, 25	1", 1.1/4"	96	3,7795	
A 3	12,0	22,0	30	1.1/2", 1.1/4"	117	4,6063	
A 34	12,0	30,0	30	1.1/2", 1.1/4"	117	4,6063	
Rolling head system - size	Working	range	D - F	lange	D - Fl	ange	
			Durchmess	er - Standard	Durchmesse	r - Standard	
	from mm	to mm	mm	Zoll	mm	Zoll	
A 4-1	14	30	140	5,5118	165	6,4960	
A 45-1	16	42	140	5,5118	165	6,4960	
A 5-1	18	39	200	7,8740	200	7,8740	
A 45-1 A 5-1 A 56-1 Flange design	22	52	200	7,8740	200	7,8740	
A 6b-1	30	45	200	7,8740	255	10,0393	

Adam tangential rolling systems

Adam tangential rolling systems will increase your efficiency in thread and profile production on CNC machining centres, CNC turning machines and on all manual cross-slide machines.

The main advantage of our tangential thread rolling systems is the option to roll threads as well as profiles within a workpiece, between shoulders and varying diameters and whilst rolling shortest threads and run-ons. Combine these advantages with ultrashort cycle times, and the capacity of your machine tools will be increased dramatically.

Our tangential rolling systems move laterally across the workpiece and are fitted with two thread rolls. These are used on a setby-set basis. A release mechanism is not required. The length of the thread results from the width of the rolling head.

Adam rolling systems tangential system TR 20, e.g. with 2-part holder for fitting on a cross-slide machine

Overview of Adam tangential rolling systems - types and sizes

Rolling head system - size	Working	range	Width ma	of roll, ax.	Length of rolling head, min.		
	from mm	to mm	mm	Zoll	mm	Zoll	
TR10	2	14	15,5	0,6102	104	4,09 44	
TR20	2	30	21,5	0,8464	131	5,1574	
TR30	2	42	31,0	1,2204	168	6,614	

Every Adam tangential rolling system comes with an individually adjustable tangential rolling head holder, which is used for fitting and fixing the thread rolling head to your tooling machine.

Designs/versions

Roll sets for thread rolling systems by different manufacturers, for instance LMT-FETTE, WAGNER, WINTER, REED, etc.

Roll sets for all standard thread and profile rolling machines

Thread rolls and dies

We also supply matching thread and pro¬file rolls for our Adam rolling systems. All of our thread and profile rolls are designed and manufactured according to the latest technologies and findings and tailor-made for your individual application.

Adam thread rolls and dies are made on state-of-the-art CNC grinding centres. Our roll production has been ISO 9001-certified since 1993. For our thread rolls and dies, we use a wide range of high-performance materials from Western European manufacturers, always in line with individual requirements. All heat and surface treatments are performed in state-of-the-art vacuum and protective gas furnaces and to a reproducible quality standard.

Our entire manufacturing process is based on many years' experience with using these rolls for rolling systems and rolling machines.

For this reason, Adam rolls have a long tool life that in turn reduces the set-up and downtimes of your tooling machines and make the use of Adam rolling systems particularly efficient.

We are also happy to supply you with thread and profile rolls from other manufacturers that perfectly match these roll systems. Adam thread rolls and dies are suitable for infeed our throughfeed applications. We supply the right rolls for threads and profiles in all shapes and sizes that fit all standard die machines, in the same outstanding quality as our rolls for rolling systems.

Each set of Adam dies is customised to suit your specific application and requirements. For Adam dies, we also supply high-precision plunge rolls with radius-runout (RRO) in a variety of formats. Adam thread rolls and dies are used in aerospace and automotive engineering, in racing and of course in tool and machine construction. Dies



Rolling systems

Adam rolling systems use material sparingly - there is no costly waste in the form of chips. Adam rolling systems allow for the high-precision production of nearly all thread sizes and types as well as for special applications such as flanging, radii, knurling and gearing. The workpiece surfaces obtain a press-polished surface quality. Adam rolling systems may be used universally, thereby increasing productivity. They are used in a wide range of industries, such as the automotive industry, the supply industry and in machine construction. Adam rolling systems may also be used efficiently in smaller batch sizes.

Service/maintenance and repair

Our service includes the analysis of the condition of your rolling system and the compilation of a cost estimate. You will be invoiced only for the required spare parts and the return delivery – labour is included in the free service package. We are also happy to service most rolling systems from other manufacturers that are still in use at your facility.

Technical data:

Adam thread rolling heads are suitable for the machining of all materials with cold-forming properties. The required strain of the material depends on the forming size.

Workpiece preparation:

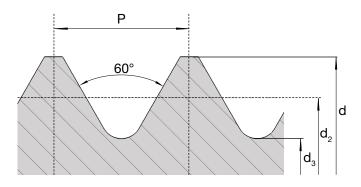
The starting diameter must be prepared with narrow tolerances (for the pre-machining diameter, please see the tables from page 8 to 11). A chamfer with an angle of approximately $10 - 30^{\circ}$ is required.

Tensile strength:

During cold-forming, the tensile strength of the material will increase. The fibre orientation is not disturbed, resulting in a higher static and dynamic tensile strength.

Rolling speed:

The rolling speed ranges from 20m/min to 80m/min (in exceptional cases, up to 100m/min). The thread is produced in a single run (for guiding values on rolling speeds, please see the table on pages 12 and 13.)


Surface quality of the thread flank:

The surface quality of the thread flank is very high as the flank is burnished. This also results in a low corrosion tendency.

www.boehlerit.com

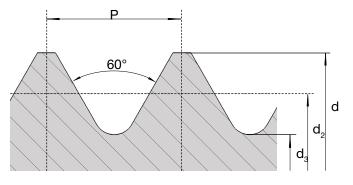
Metric ISO common threads

Thread limit dimensions and lead angle for bolt threads see DIN 13

d = Bolt major-Ø
$d_2 = Bolt pitch-Ø$
$d_3 = Bolt minor-Ø$

Lead- $\not \ll \beta$ to nominal diameter d₂

(mm) Pitch 4 2 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7			Tolerance field															
Nominal pitch Image: Amount of the stress				(mm)														
Nomi nal pitch d d d d d d d d d g g M 1, 6 × 0.35 1,600 1,547 1,373 1,333 1,170 1,581 1,496 1,354 1,191 1,151 1,554 1,469 1,327 1,264 1,124 4* 38' M 1,8 × 0,35 1,600 1,547 1,373 1,333 1,70 1,581 1,496 1,554 1,491 1,551 1,564 1,491 1,551 1,564 1,491 1,551 1,564 1,491 1,551 1,669 1,527 1,644 4'11 1,551 1,564 1,490 1,522 2,552 2,550 2,337 3'24 M 2,500 2,432 2,650 2,489 3,413 3,943 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 3,404 <th>Threa</th> <th>ad-</th> <th></th> <th>Lead</th>	Threa	ad-																Lead
nal pt Cn d d2 d3 d3 <th< th=""><th>Nomi-</th><th></th><th></th><th></th><th>4 h</th><th></th><th></th><th></th><th></th><th>6 a</th><th></th><th></th><th></th><th></th><th>6 e</th><th></th><th></th><th></th></th<>	Nomi-				4 h					6 a					6 e			
0 1 max. max. <thmax.< th=""> max. max.<</thmax.<>	nal	pitch	d			2	d ₃	d			2	d ₃	d			2	d ₃	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ø	Р	max.	min.			max.	max.	min.	max.	min.	max.	max.	min.			max.	Deg., min.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M 1,6	x 0,35	1,600	1,547	1,373	1,333	1,170	1,581	1,496	1,354	1,291	1,151	1,554	1,469	1,327	1,264	1,124	4° 38'
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M 1,8	x 0,35	1,800	1,747	1,573	1,533	1,370	1,781	1,696	1,554	1,491	1,351	1,754	1,669	1,527	1,464	1,324	4° 3'
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		,	,	,	,		,				,			,	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M 2,2	x 0,45	2,200	2,137	1,908	,	,	2,180	2,080	1,888	1,817	1,628	2,152	2,052				4° 17'
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M 2,5	x 0,45	2,500	2,437	2,208	2,163	1,948	2,480	2,380	,	,		2,452	2,352			1,900	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	,	,	,	,	,	,			,	,	,			,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	,	,	,	,	,			,			,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · ·		· ·	,	,	,	,	,	,	,	,		,	,	,	,	,	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	,	,	,	,	,	,	,		,		,	,		,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	,	,	,	,	,	,	,			,	,		,	,	,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,		,	,	,	,			,	,						,	
M 12 x 1,75 12,000 11,830 10,768 9,853 11,966 11,710 10,829 10,679 9,819 11,929 11,664 10,792 10,642 9,782 2° 56' M 14 x 2 14,000 13,820 12,701 12,601 11,546 13,962 13,682 12,603 11,508 13,929 13,649 12,630 12,470 11,475 2° 52' M 16 x 2 16,000 15,820 14,701 14,601 13,546 15,962 15,682 14,633 15,929 15,649 14,630 14,470 13,475 2° 28' M 18 x 2,5 18,000 17,788 16,376 16,270 14,933 17,958 17,623 16,334 16,164 14,891 17,920 17,585 16,296 16,126 14,853 2° 46' M 20 x 2,5 20,000 19,788 18,367 18,270 16,933 19,958 18,623 18,334 18,164 16,891 19,920 21,585 12,926 20,126 18,853 2° 18' M 24 x 3 24,000 <td></td> <td>,</td> <td></td> <td></td> <td>,</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>,</td> <td></td> <td></td> <td>,</td> <td></td>		,			,	,						,		,			,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													-		-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
M 22 x 2,5 22,000 21,788 20,376 20,370 18,933 21,958 21,623 20,334 20,164 18,891 21,920 21,585 20,296 20,126 18,853 2° 14' M 24 x 3 24,000 23,764 20,511 21,926 20,319 23,952 23,577 22,003 21,803 20,271 23,915 23,540 21,996 21,766 20,234 2° 28' M 27 x 3 27,000 26,764 25,051 24,926 23,319 26,952 26,577 25,003 24,803 23,271 26,915 26,540 24,966 24,766 23,234 2° 10' M 30 x 3,5 33,000 27,735 30,727 30,595 28,706 29,947 29,522 27,674 27,462 25,653 29,910 29,485 30,637 30,425 28,616 2° 16' M 33 x 4 36,000 35,700 33,402 31,933 35,940 35,465 33,342 31,118 31,033 36,307 36,307 36,803 33,988 2° M 42					,	,	,	,		,	,			,				
M 24 x 3 24,000 23,764 22,051 21,926 20,319 23,952 23,577 22,003 21,803 20,271 23,915 23,540 21,996 21,766 20,234 2° 28' M 27 x 3 27,000 26,764 25,051 24,926 23,319 26,952 26,577 25,003 24,803 23,271 26,915 26,540 24,966 24,766 23,234 2° 10' M 30 x 3,5 30,000 29,735 27,727 27,595 25,706 29,947 29,522 27,674 27,462 25,653 29,910 29,485 27,637 27,425 25,616 2° 18' M 33 x 3,5 33,000 32,735 30,727 30,595 28,706 32,947 32,522 30,674 30,462 28,653 32,910 32,485 30,637 30,425 28,616 2° 4' M 30 x 4 39,000 38,700 36,402 36,262 34,903 38,465 36,342 36,118 34,033 38,907 38,741 36,379 2° 6' M 42 x 4,5 <td></td>																		
M 27 x 3 27,000 26,764 25,051 24,926 23,319 26,952 26,577 25,003 24,803 23,271 26,915 26,540 24,966 24,766 23,234 2° 10' M 30 x 3,5 30,000 29,735 27,727 27,595 25,706 29,947 29,522 27,674 27,462 25,653 29,910 29,485 27,637 27,425 25,616 2° 18' M 33 x 3,5 33,000 32,735 30,727 30,595 28,706 32,947 32,522 30,674 30,462 28,653 32,910 32,485 30,637 30,425 28,616 2° 4' M 36 x 4 36,000 35,700 33,402 33,262 31,093 35,465 33,342 31,118 31,033 35,905 35,430 33,007 30,883 30,998 2° 11' M 39 x 4 39,000 38,700 36,402 36,222 34,093 38,445 36,342 36,118 34,033 38,905 38,430 36,307 36,083 39,982 2° 6' M 42 <td></td> <td>· · ·</td> <td>- · ·</td> <td></td>		· · ·	- · ·															
M 30 x 3,5 30,000 29,735 27,727 27,595 25,706 29,947 29,522 27,674 27,462 25,653 29,910 29,485 27,637 27,425 25,616 2° 18' M 33 x 3,5 33,000 32,735 30,727 30,595 28,706 32,947 32,522 30,674 30,462 28,653 32,910 32,485 30,637 30,425 28,616 2° 4' M 36 x 4 36,000 35,700 33,402 33,262 31,093 35,940 35,465 33,342 31,118 31,033 35,905 35,430 33,007 30,803 30,998 2° 11' M 39 x 4 39,000 38,700 36,402 36,262 34,093 38,940 38,465 36,342 36,118 34,033 38,905 38,430 36,307 36,083 33,988 2° M 45 x 4,5 42,000 41,685 39,077 38,927 36,479 41,397 44,397 42,014 41,778 39,416 44,900 44,400 41,907 41,741 39,379 2° c'																		
M 33 x 3,5 33,000 32,735 30,727 30,595 28,706 32,947 32,522 30,674 30,462 28,653 32,910 32,485 30,637 30,425 28,616 2° 4' M 36 x 4 36,000 35,700 33,402 33,262 31,093 35,940 35,465 33,342 33,118 31,033 35,905 35,430 33,007 30,083 30,998 2° 11' M 39 x 4 39,000 38,700 36,402 36,262 34,093 38,940 38,465 36,342 36,118 34,033 38,905 38,430 36,007 36,083 33,988 2° M 42 x 4,5 42,000 41,685 39,077 38,927 36,479 41,937 41,437 39,014 38,778 36,416 41,900 41,400 38,977 38,741 36,379 2° 6' M 45 x 4,5 45,000 44,685 42,077 41,927 39,479 44,397 42,014 41,778 39,416 44,900 44,400 41,977 41,741 39,379 2° 2'																		
M 36 x 4 36,000 35,700 33,402 33,262 31,093 35,940 35,465 33,342 33,118 31,033 35,905 35,430 33,007 33,007 33,083 30,998 2° 11' M 39 x 4 39,000 38,700 36,402 36,262 34,093 38,940 38,465 36,342 36,118 34,033 38,905 38,430 36,307 36,083 33,988 2° M 42 x 4,5 42,000 41,685 39,077 38,927 36,479 41,937 41,437 39,014 38,778 36,416 41,900 41,400 38,977 38,741 36,379 2° 6' M 45 x 4,5 45,000 44,685 42,077 41,927 39,479 44,397 44,437 42,014 41,778 39,416 44,900 44,400 41,977 41,741 39,379 2° 2' M 48 x 5 48,000 47,665 44,592 41,866 47,929 47,399 44,681 44,431 41,775 51,894 51,364 48,646 48,396 45,760		,		,														
M 39 x 4 39,000 38,700 36,402 36,262 34,093 38,940 38,465 36,342 36,118 34,033 38,945 38,430 36,307 36,083 33,988 2° M 42 x 4,5 42,000 41,685 39,077 38,927 36,479 41,937 41,437 39,014 38,778 36,416 41,900 41,400 38,977 38,741 36,379 2° 6' M 45 x 4,5 45,000 44,685 42,077 41,927 39,479 44,337 42,014 41,778 39,416 44,900 44,400 41,977 41,741 39,379 1° 57' M 48 x 5 48,000 47,665 44,752 44,592 41,866 47,929 47,399 44,681 44,431 41,795 47,894 47,364 44,664 44,396 41,790 2° 2' M 52 x 5 52,000 51,665 48,752 48,592 45,866 51,929 51,399 48,681 48,431 45,795 51,894 51,364 48,646 48,396 45,760 1° 52'																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1												-			
M 48 x 5 48,000 47,665 44,752 44,592 41,866 47,929 47,399 44,681 44,431 41,795 47,894 47,364 44,646 44,396 41,790 2° 2' M 52 x 5 52,000 51,665 48,752 48,592 45,866 51,929 51,399 48,681 48,431 45,795 51,894 51,364 48,646 48,396 45,760 1° 52' M 56 x 5,5 56,000 55,645 52,228 49,252 55,925 55,365 52,353 52,088 49,177 55,888 55,328 52,316 52,051 49,140 1° 54' M 60 x 5,5 60,000 59,645 56,228 53,222 59,925 59,365 56,353 56,088 53,177 59,888 59,328 56,316 56,051 53,140 1° 46' M 64 x 6 64,000 63,625 60,103 59,923 56,639 63,920 63,320 60,023 59,743 56,559 63,882 63,282 59,985 59,705 56,521 1° 49'		,																
M 52 x 5 52,000 51,665 48,752 48,592 45,866 51,929 51,399 48,681 48,731 45,795 51,894 51,364 48,646 48,396 45,760 1° 52' M 56 x 5,5 56,000 55,645 52,428 52,258 49,252 55,925 55,365 52,353 52,088 49,177 55,888 55,328 52,316 52,051 49,140 1° 54' M 60 x 5,5 60,000 59,645 56,258 53,252 59,925 59,365 56,353 56,088 53,177 59,888 59,328 56,316 56,051 53,140 1° 54' M 64 x 6 64,000 63,625 60,103 59,923 56,639 60,023 59,743 56,559 63,882 63,282 59,985 59,705 56,521 1° 49'	M 48					,												
M 60 x 5,5 60,000 59,645 56,258 53,252 59,925 59,365 56,353 56,088 53,177 59,888 59,328 56,316 56,051 53,140 1° 46' M 64 x 6 64,000 63,625 60,103 59,923 56,639 63,920 63,320 60,023 59,743 56,559 63,882 63,282 59,985 59,705 56,521 1° 49'		x 5																1° 52'
M 60 x 5,5 60,000 59,645 56,428 56,258 53,252 59,925 59,365 56,353 56,088 53,177 59,888 59,328 56,316 56,051 53,140 1° 46' M 64 x 6 64,000 63,625 60,103 59,923 56,639 63,920 63,320 60,023 59,743 56,559 63,882 63,282 59,985 59,705 56,521 1° 49'	M 56	x 5,5	56,000	55,645	52,428	52,258	49,252	55,925	55,365	52,353	52,088	49,177	55,888	55,328	52,316	52,051	49,140	1° 54'
M 64 x 6 64,000 63,625 60,103 59,923 56,639 63,920 63,320 60,023 59,743 56,559 63,882 63,282 59,985 59,705 56,521 1° 49'	M 60	x 5,5	1												-			1° 46'
M 68 x 6 68,000 67,625 64,103 63,923 60,639 67,920 67,320 64,023 64,743 60,559 67,882 67,282 63,985 63,705 60,521 1° 42'	M 64	x 6	64,000	63,625	60,103	59,923	56,639	63,920	63,320	60,023	59,743	56,559	63,882	63,282	59,985	59,705	56,521	1° 49'
	M 68	x 6	68,000	67,625	64,103	63,923	60,639	67,920	67,320	64,023	64,743	60,559	67,882	67,282	63,985	63,705	60,521	1° 42'


Example of a bolt thread designation (tolerance centre): M 16 - 6g Example of a bolt left-hand thread designation (tolerance centre): M 16 - 6g-LH

.

Metric ISO common threads

Thread limit dimensions and lead angle for bolt threads see DIN 13

d = Bolt major-Ø
$d_{2} = Bolt-pitch-Ø$
d_3^{-} = Bolzen minor-Ø
Lead- $\checkmark \beta$ to nominal diameter d ₂

		Tolerance field															
									(mm)								
	ead-																Lead
Nomi- nal-	nitah		-	4 h		-		-	6 g					6 e			
	pitch	d	-	d		d ₃		1 	d		d ₃	C		d		d ₃	β Deg., min.
Ø	P	max.	min.	max.	min.	max.	max.	min.	max.	min.	max.	max.	min.	max.	min.	max.	
	5 x 0,35	2,500	,	2,273 2,773	,	2,070 2,570	,	,	2,254 2,754		2,051 2,551	2,454 2,954			,		2° 48' 2° 18'
	x 0,35	3,000 3,500	2,947	3.273	,	3.070	,	2,890	3,254	2,007	3.051	2,954	,	,	3,160	,	2 18 1° 57'
-	5 x 0,35	,	,	,	,	,	3,461	,	3,655	3,580	,	,	,	,	,	,	1 57 2° 28'
	x 0,5 5 x 0,5	4,000 4,500	3,933 4,433	3,675 4,175	3,627 4,127	3,387 3,887	4,480	,	4,155	4,080	3,367 3,867	3,950 4,450					2 28 2° 10'
MF 5	x 0,5	4,500	4,433	,	,	4,387			4,155	4,080	4.367	4,450	,	,		,	2 10 1° 57'
		5,500	5,433	,	,	4,887	,	,	5,155	5,080	4,867	5,450	,	,	,	4,837	1° 45'
MF 6	5 x 0,5 x 0,5	6.000	5,933			5,387	5,480		5,655	5,570	5,367	5,950	,	,	,		1° 36'
MF 6	x 0,5	6.000					,	,	5,491	5,391	5.058			,		5,024	2° 28'
MF 7	x 0,75	7.000	6.910		,	,	,		6.491	6,391	6.058	,	,	,	6,357	6.024	
MF 8	x 0,75	8,000	7,910	7,513	,	7,080		,	7,491	7,391	7,058	7,944	7,804	,	7,357	7,024	
MF 8	x 1	8,000	7,888						7,324	7,212	6,747	7,944	7,804			6,713	2° 28'
MF 9	x 0,75	9.000	8,910	,	,	,	,		8,491	8,391	8,058	8,944	8,804	,	8,357	8,024	2 20 1° 36'
MF 9	x 1	9,000	8,888	,	,	7,773	,	,	,	,	7,747	8,940	,	,	,	7,713	2° 10'
MF 10		10,000							9,491	9,391	9,058						1° 26'
MF 10	x 1	10,000	9,888	,	,	,	,	,	9,324	,	8,747	9,944	,	,	,	,	1° 57'
MF 10		10,000	,	,	,	,	,	,	9,324	,	8,438	,	,		,	8,403	2° 28'
MF 11		11,000	,	,	,	,	,	,	,	,	· ·	,		,	,	,	2 20 1° 18'
MF 11	x 1	11,000						10,794							· ·		1° 45'
MF 12		12,000	,	,	,												1° 11'
MF 12	x 1	12,000			,	,	,			,		,	,	,			1° 36'
MF 12		12,000															1 00 2° 2'
MF 12	x 1,20	12,000															2° 28'
MF 14	x 1	14,000			,	,	,		,	,	,	,	,	,	,	,	1° 22'
MF 14	x 1.5	14,000	,	,	,	,	,	,		,	,	,	,	,	,	,	2° 6'
MF 16	x 1	16,000													· ·		1° 11'
MF 16	x 1,5	16,000					-										1° 49'
MF 18	x 1,0	,	,	,	,	,	,	17,794	,	,	,	,	,	,	,	,	1° 3'
MF 18	x 1,5	18,000															1° 36'
MF 18	x 1,0	18,000			,	,	,		,	,	,	,	,	,	,	,	2° 10'
MF 20	x 1	20,000	,	,	,	,	,	,	,	,	,	,	,	,	,	,	0° 56'
MF 20	x 1,5	20,000															1° 26'
MF 20	x 2	20,000															1° 57'
MF 22	x 1	22,000															0° 51'
MF 22	x 1,5	22,000															1° 18'
MF 22	x 2	22,000															1° 45'
_		,	,	.,	. ,	.,	,.,=	,	.,	.,	.,	,	,	.,	-, -	-, -	

								Tole	erance (mm)	field						
Thre	ad-															Lead
Nomi-				4 h					6 g					6 e		•
nal	pitch		d		2	d ₃		d	_	2	d ₃		d	d2	d ₃	β
ø	Р	max.		max.		-		min.		min.		max.		max. min.	-	P Deg., min
~ MF 24	x 1												1	23,290 23,165	-	
MF 24														22,959 22,809		
MF 24														22,630 22,460		
MF 27		27,000	26,888	26,350	26,270	25,773	26,974	26,794	26,234	26,199	25,747	26,940	26,760	26,290 26,165	525,173	0° 41'
MF 27	x 1,5	27,000	26,850	26,026	25,931	25,160	26,968	26,732	25,994	25,844	25,128	26,933	26,697	25,959 25,809	25,093	1° 3'
MF 27	x 2	27,000	26,820	25,701	25,595	24,546	26,962	26,682	25,663	25,493	24,508	26,929	26,649	25,630 25,460	24,475	1° 25'
MF 30	x 1	30,000	29,888	29,350	29,270	28,773	29,974	29,794	29,324	29,199	28,747	29,940	29,760	29,290 29,165	28,713	0° 37'
MF 30	x 1,5	30,000	29,850	29,026	28,931	28,160	29,968	29,732	28,994	28,844	28,128	29,933	29,967	28,959 28,809	28,093	0° 56'
MF 30	x 2	30,000	29,820	28,701	28,595	27,546	29,962	29,682	28,663	28,493	27,508	29,929	29,649	28,630 28,460	27,475	1° 16'
MF 30	х З	30,000	29,764	28,051	27,926	26,319	29,952	29,577	28,003	27,803	26,271	29,915	29,540	27,966 27,766	626,234	1° 57'
MF 33	x 1,5	33,000	32,850	32,026	31,931	31,160	32,968	32,732	31,994	31,844	31,128	32,933	32,697	31,959 31,809	31,093	0° 51'
MF 33	x 2	33,000	32,820	31,701	31,595	30,546	32,962	32,682	31,663	31,493	30,508	32,929	32,649	31,630 31,460	30,475	1° 9'
MF 33	х З	33,000	32,764	31,051	30,926	29,319	32,952	32,577	31,003	30,803	29,271	32,915	32,540	30,966 30,766	29,234	1° 45'
MF 36	x 1,5	36,000	35,850	35,026	34,931	34,160	35,968	35,732	34,994	34,844	34,128	35,933	35,697	34,959 34,809	34,093	0° 47'
MF 36	x 2	36,000	35,820	34,701	34,595	33,546	35,962	35,682	34,663	34,493	33,508	35,929	35,649	34,630 34,460	33,475	1° 3'
MF 36	х З	36,000	35,764	34,051	33,926	32,319	35,952	35,577	34,003	33,803	32,271	35,915	35,540	33,966 33,766	32,234	1° 36'
MF 39	x 1,5	39,000	38,850	38,026	37,931	37,160	38,968	38,732	37,994	37,844	37,128	38,933	38,697	37,959 37,809	37,092	0° 43'
MF 39	x 2	39,000	38,820	37,701	37,595	36,546	38,962	38,682	37,663	37,493	36,508	38,929	38,649	37,630 37,460	36,475	0° 58'
MF 39	х З	39,000	38,764	37,051	36,926	35,319	38,952	38,577	37,003	36,803	35,271	38,915	38,540	36,966 36,766	35,234	1° 28'
MF 42	x 1,5	42,000	41,850	41,026	40,931	40,160	41,968	41,732	40,994	40,844	40,128	41,933	41,697	40,959 40,809	40,093	0° 40'
MF 42	x 2	42,000	41,820	40,701	40,595	39,546	41,962	41,682	40,663	40,493	39,508	41,929	41,649	40,630 40,460	39,475	0° 53'
MF 42	х З	42,000	41,764	40,051	39,926	38,319	41,952	41,577	40,003	39,803	38,271	41,915	41,540	39,966 39,766	38,234	1° 22'
MF 42	x 4	42,000	41,700	39,402	39,262	37,093	41,940	41,465	39,342	39,118	37,033	41,905	41,430	39,307 39,083	36,998	1° 51'
MF 45	x 1,5	45,000	44,850	44,026	43,931	43,160	44,968	44,732	43,994	43,844	43,128	44,933	44,697	43,959 43,809	43,093	0° 37'
MF 45	x 2	45,000	44,820	43,701	43,595	42,546	44,962	44,682	43,663	43,493	42,508	44,929	44,649	43,630 43,460	42,475	0° 50'
MF 45	х З	45,000	44,764	43,051	42,926	41,319	44,952	44,577	43,003	42,803	41,271	44,915	44,540	42,966 42,766	641,234	1° 16'
MF 45		45,000	44,700	42,402	42,262	40,093	44,940	44,465	42,342	42,118	40,033	44,905	44,430	42,307 42,083	39,998	1° 43'
MF 48	x 1,5	48,000	47,850	47,026	46,926	46,160	47,968	47,732	46,994	46,834	46,128	47,933	47,697	46,959 46,799	46,093	0° 35'
MF 48	x 2	48,000	47,820	46,701	46,589	45,546	47,962	47,682	46,663	46,483	45,508	47,929	47,649	46,630 46,450	45,475	0° 47'
MF 48	х З	48,000	47,764	46,051	45,919	44,319	47,952	47,577	46,003	45,791	44,271	47,915	47,540	45,966 45,754	44,234	1° 11'
MF 48	x 4	48,000	47,700	45,402	45,252	43,903	47,940	47,465	45,342	45,106	43,033	47,905	47,430	45,307 45,071	42,998	1° 36'
MF 52	x 1,5	52,000	51,850	51,026	50,926	50,160	51,968	51,732	50,994	50,834	50,128	51,933	51,697	50,959 50,799	50,093	0° 32'
MF 52	x 2		,						,					50,630 50,450		
MF 52							· · ·							49,966 49,754	· · ·	
MF 52	x 4	-												49,307 49,071		
MF 56		,	,						,	,				54,959 54,799		
MF 56		,	,	,	,	,		,	,	,	,	,	,	54,630 54,450	,	
MF 56				-										53,966 53,754	· ·	
MF 56		,	,	,	,			,	,	,	,		,	53,307 53,071	,	
MF 60							· ·	· ·						58,959 58,799		
MF 60														58,630 58,450		
MF 60		-		-	-								-	57,966 57,754	-	
MF 60														57,307 57,701		
MF 64														62,630 62,450		
MF 64		,	,	,		,	,	,	,			,	,	61,966 61,754		
MF 64														61,307 61,071		
MF 68		,	,	,	,	,	,	,	,	,	,	,	,	66,630 66,450	,	
MF 68				· ·										65,966 65,754		
MF 68														65,307 65,071		
MF 72		-			-								-	70,630 70,450	-	
MF 72				· ·										69,966 69,754		
MF 72														69,307 69,701		
MF 72	хб	12,000	71,625	68,103	67,923	64,639	11,920	71,320	68,023	67,743	64,559	71,882	71,282	67,985 67,705	64,521	1° 36'

Example of a bolt thread designation (tolerance centre): M 16 - 6g Example of a bolt left-hand thread designation (tolerance centre): M 16 - 6g-LH

									Tole	rance f	ield							
										(mm)								
Thre	hee																	Lead
Nomi					4 h					6 g					6 e			
nal	p	itch	c	1		2	d ₃	C	ł	-	2	d ₃	(ł		2	d ₃	β
Ø		Ρ	max.	min.	max.	min.	-	max.	min.	max.		-	max.	min.	max.	min.	max.	Deg., min.
MF								75,952										
MF								75,940										0° 59' 1° 31'
MF 8								75,920 79,962										
MF 8								79,952										
MF 8								79,940										
MF 8				-				79,920										1° 26'
MF 8	85 :	x 2	85,000	84,820	83,701	83,589	82,546	84,962	84,682	83,663	83,483	82,508	84,929	84,649	83,630	83,450	82,475	0° 26'
MF 8								84,952										
MF 8								84,940										
MF 8							,	84,920		,								
MF 9								89,962										
MF 9								89,952 89,940										
MF 9								89,920										
MF								94,962										
MF 9			,	,	,	,	,	94,952	,		,			,				
MF 9	95 :	x 4		-				94,490										
MF 9	95 :	x 6	95,000	94,625	91,103	90,913	87,639	94,920	94,320	91,023	90,723	87,559	94,882	94,282	90,985	90,685	87,521	1° 12'
MF 10	00	x 2	100,000	99,820	98,701	98,583	97,546	99,962	99,682	98,663	98,473	97,508	99,929	99,649	98,630	98,440	97,475	0° 23'
MF 10			100,000	,	,	,	,	,	,	,	,	,	,	,	,	,	,	
MF 10			100,000							,								
MF 10	00	хю	100,000	99,625	96,103	95,913	92,639	99,920	99,320	96,023	95,723	92,559	99,882	99,282	95,985	95,685	95,521	1° 8'
				1	1													

Rolling speeds

	Rolling speed ft./min.											
Blank diameter	20	25	30	35	40	50	60	70	80	90	100	
					Compone	ent rotatin	g at r.p.m	•				
1	6400	8000	9600	11150	12750	16000	19200	22300	25500	29000	32000	
2	3200	4000	4800	5600	6400	8000	9600	11200	12800	14400	16000	
3	2150	2700	3200	3750	4250	5350	6400	7500	8500	9600	10650	
4	1600	2000	2400	2800	3200	4000	4800	5600	6400	7200	8000	
5	1300	1600	1950	2250	2600	3250	3900	4500	5150	5800	6420	
6	1100	1330	1600	1875	2150	2700	3200	3750	4300	4800	5350	
7	950	1150	1400	1600	1850	2300	2750	3200	3650	4120	4600	
8	800	1000	1200	1400	1600	2000	2400	2800	3200	3600	4000	
9	720	900	1100	1250	1450	1800	2150	2500	2850	3200	3550	
10	640	800	1000	1200	1300	1600	1950	2250	2600	2900	3200	
12	540	700	800	950	1100	1350	1600	1900	2150	2430	2700	
14	450	600	700	800	950	1150	1400	1600	1850	2100	2300	
15	430	550	650	750	875	1100	1300	1500	1720	1950	2150	
16	410	510	600	700	800	1000	1200	1400	1600	1800	2000	
18	369	450	540	630	720	910	1100	1270	1445	1600	1800	
20	320	400	485	560	640	800	800	1130	1300	1450	1620	
22	300	375	450	520	600	740	900	1050	1200	1320	1470	
24	270	350	420	470	540	675	800	950	1100	1200	1350	
25	260	330	400	460	520	640	775	900	1050	1170	1300	
26	250	315	390	450	510	630	750	870	1000	1125	1250	
28	230	300	350	415	470	590	700	800	920	1030	1150	
30	220	270	340	380	435	540	640	760	875	970	1090	
32	210	260	320	364	425	530	615	720	800	910	1000	
34	190	240	295	340	385	480	570	665	760	855	950	
35	185	230	280	330	375	465	550	640	740	835	935	
36	180	225	270	315	360	450	540	630	710	800	900	
38	170	210	260	300	340	430	510	590	680	760	850	
40	160	200	240	285	325	410	485	560	640	720	800	
45	145	180	215	255	290	365	435	510	580	650	715	
50	130	160	195	225	260	325	390	450	520	590	650	
55	120	150	175	205	235	295	350	410	470	530	590	
60	110	135	160	190	215	270	325	375	435	490	540	
65	100	125	130	175	200	255	305	350	400	450	500	
70	95	115	140	160	185	230	275	325	370	420	465	
75	90	110	130	150	175	215	260	310	350	390	435	
80	85	105	125	145	160	205	250	290	330	370	410	
85	80	100	115	135	155	190	230	265	310	340	380	
90	75	90	110	125	145	180	215	255	290	325	365	
100	70	85	100	115	130	160	195	225	260	300	325	

Rolling speeds

In general, the following applies:

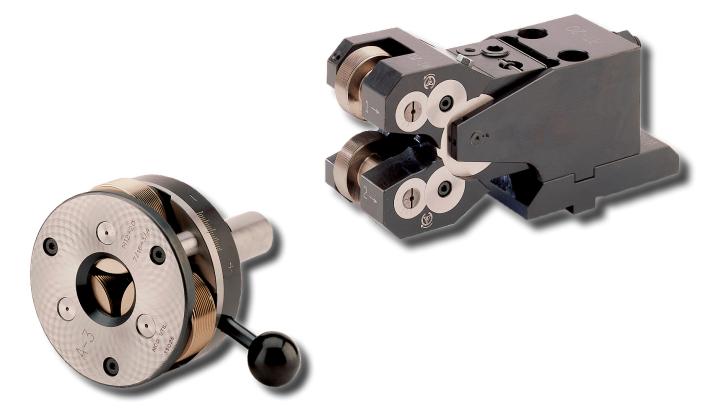
- Cone threads may be produced with a higher rolling speed than trapezoidal threads.
- In case of a higher strain σ , the rolling speed is higher than for materials with a smaller strain σ .
- Materials with a higher tensile strength must be rolled with a lower rolling speed.
- For cone threads, we recommend 20 80 m/min as a guideline. For trapezoidal and similar threads, we recommend approx. 15 30 m/min.

Rolling speed formula:

$$V = \frac{d_2 \cdot \pi \cdot n}{1000} \text{ [m/min]}$$

Sample calculation: Starting -Ø (flank -Ø) Workpiece speed M 10 x 1,5 (6 g) d₂ = 8,99 mm n = 1800 U/min

$$V = \frac{8,99 \cdot \pi \cdot 1800}{1000} \text{ [m/min]}$$


V = 50,84 m/min

Rotational speed formula:

$$u = \frac{1000 \cdot V}{d_2 \cdot \pi} [min^{-1}]$$

Sample calculation: Starting-Ø (flank-Ø) Rolling speed M 10 x 1,5 (6 g) $d_2 = 8,99 \text{ mm}$ V = 51 m/min

$$n = \frac{1000 \cdot 51}{8,99 \cdot \pi}$$
 [min⁻¹]

Material rolling properties

Generally speaking, materials starting from a minimum strain of approx. 5% and a tensile strength of up to approx. 1400 N/mm² may be formed.

Table values

Please refer to the information in the table below for each individual case.

The values listed in the table are guide values only and may vary depending on the rolling head type, the material quality and the machine conditions.

If you require technical support, please contact your Boehlerit customer service representative.

Materials	Material DIN	Material code	Tensile strength N/mm²	Hardness Brinell (HB)	Strain σ min. 5 %	Rolling properties	Rolling speed m/min.
Ferrous metals	6						
General	ST 37	1.0120	500	150	28	•••	40 - 80
structural steels	ST 50	1.0531	500 - 600	150 - 190	22	•••	30 - 60
510010	ST 60	1.0540	500 - 600	190 - 250	15	•••	20 - 50
	CK 45	1.1191	650 - 850	200 - 250	15	•••	20 - 50
Case harde-	C 15 E	1.1141	500	150	16	•••	40 - 70
ning steel	16 MNCr 5	1.7131	500 - 850	150 - 200	10	••	30 - 50
Nitriding	34 CrAl 6	1.8504	1000	290	14	••	20 - 50
steels	31 CrMo V 9	1.8519	1000 - 1300	290 - 380	11	••	20 - 40
Free cutting	9 S 20	1.0711	360	160	25	•••	30 - 60
steels	9 S Mn Pb 28	1.0718	380	170	23	•••	30 - 60
	35 S 20	1.0726	500 600	190	18	•••	30 - 60
Heat treatable	C 35	1.0501	700	200	18	•••	40 - 70
steels	CK 60	1.1221	700 - 900	200 - 260	14	••	30 - 60
	42 CrMo 4	1.7225	900 - 1200	260 - 350	11	••	20 - 50
	30 CrMo V 9	1.7707	1200 - 1400	350 - 400	9	•	20 - 40
	34 CrNiMo 6	1.6582	1000 - 1400	350	9	•	20 - 40
Tempered steels	50 CrV 4	1.8159	900 - 1000	250	10	•	20 - 40

Rolling properties:

- ••• Good rolling properties
- •• Can be rolled
- Limited rolling properties

Material rolling properties

Materials	Material DIN	Material code	Tensile strength N/mm ²	Hardness Brinell (HB)	Strain σ min. 5 %	Rolling properties	Rolling speed m/min.
Ferrous steels							
Tool steels	X 210 Cr 12	1.2080	800	230		••	30 - 50
	X 130 W 5	1.2453	800 - 1000	230 - 290	9	••	20 - 40
	115 CrV 3	1.2210	600 - 700	220	10	••	30 - 50
High speed steels	S 6-5-2 (DM 05)	1.3343	850 - 900	240 - 300		•	20 - 40
	S 6-5-2-5 (E Mo 5 Co5)	1.3243	850 - 900	240 - 300		•	20 - 40
Stainless	X 10 Cr 13	1.4006	550 - 650	200 - 250	18	••	30 - 50
steels	X 22 CrNi 17	1.4057	800 - 900	250 - 320	12	••	30 - 50
	X 12 CrMoS 17	1.4104	500 - 800	200 - 250	20	••	30 - 50
	X 5 CrNi 1810	1.4301	500 - 700	200 - 250	50	•••	35 - 55
	X 10 CrNiS 189	1.4305	500 - 700	200 - 250	50	•••	35 - 55
	X5CrNiMo 17122	1.4401	500 - 700	200 - 250	30	••	30 - 50
	X6CrNiMoTi 17122	1.4571	500 - 700	200 - 250	40	••	30 - 50
Cast steels	GS 38	1.0416	500	150	20	•••	40 - 60
	GS 36 Mn 5	1.5067	500 - 600	150 - 200	17	•••	40 - 60
	GS 50 CrMo 4	1.7228	650	200	11	••	30 - 50
Malleable cast	GTS 45		450 - 500	150 - 200	6	••	30 - 60
ron	GTS 65		600 - 700	210 - 250	6	••	30 - 60
Cast iron	GGG 40	0.7040	400 - 500	140 - 180	27 - 15	•••	30 - 60
	GGG 50	0.7050	500 - 600	180 - 210	12	••	30 - 50
	GGG 60	0.7060	600 - 750	210 - 250	8	••	30-50
High temperature	NiCr 20 Co 19	Nimonic 263	540 - 700	160 - 200		••	30 - 50
steels	NiCr 17 Mo 17 FeW	Hasteloy	700 - 900	200 - 260		••	20 - 40
Nickel alloys		Inconell 600	900 - 1100	260 - 330		•	20 - 40
Non-ferrous m	etals						
Copper	C-CU (F 20)	2.0120	ca. 200	40 - 65	ca. 30	•••	40 - 100
	E-Cu (F 25)	2.0060	250	65 - 90	ca. 8	•••	40 - 80
Copper alloys	MS 63 (F 30)	2.0320.10	300	ca. 70	40	•••	40 - 80
(Brass)	MS 60 Pb (F 41)	2.0370.26	400	ca. 100	15	••	40 - 70
	MS 60 Pb (F 35)	2.0372.10	340	ca. 90	35	•••	40 - 70
	MS 58 F 44	2.0380.26	430	ca. 125	19	••	40 - 70
	M 58 F 44	2.0401.10	430	ca. 125	19	••	40 - 70
Zinc alloys	ZnCu 1	3.3525	180 - 200	40 - 60	15-4	•••	40 - 70
Aluminium	AIMg 2	3.2315	150 - 210	40 - 60	15-4	•••	40 - 70
alloys	AlMgSi 1	3.4355	200 - 320	60 - 95	14-9	••	40 - 70
	AlZnMg 3	3.1355	400 - 450	105 - 125	10-5	•	30 - 50
	AlCuMg 2	3.4365	450	115	9	••	30 - 50
	AlZnMgCu 1,5	3.7035	530 - 540	140	7	••	30 - 50
Titanium	Ti 99,7	3.7124	290 - 550	85 - 160	ca. 22	•••	30 - 60
alloys	TiCu 2,5	3.7115	550 - 750	160 - 220	ca. 20	•••	30 - 60
	TiAl 15 Sn 2	3.7164.7	750 - 950	220 - 280	ca. 10	••	30 - 60
	TiAl 7 Mo		1030 - 1100			••	20 - 40

Boehlerit GmbH & Co. KG Werk VI-Strasse 100 8605 Kapfenberg Österreich/Austria Telefon +43 3862 300 - 0 Telefax +43 3862 300 - 793 info@boehlerit.com www.boehlerit.com

boehlerit

日易晖机械

上海市天钥桥路325号嘉汇国际广场A幢2101-2102室 邮编:200030 Room 2101-2102, Gateway International Plaza, Building A, No.325, Tian Yao Qiao Road, Shanghai, China Zip: 200030 Tel: 86-21-3363-2088 & 3363-2099 Fax: 86-21-3363-3303

台北市敦化南路二段40号2楼 2/F, No.40, Sec.2, Tun Hwa S. Road, Taipei, Taiwan Zip: 106 Tel: 886-2-2705-8448 Fax: 886-2-2700-8430

电话:	86-21-3363-2088	传真:	86-21-3363-3303
电话:	86-22-5817-3069	传真:	86-22-5817-3069
电话:	86-28-8526-6681	传真:	86-28-8526-6684
电话:	86-23-6757-3205	传真:	86-23-6757-3207
电话:	86-431-8461-7085	传真:	86-431-8461-7087
电话:	86-21-5868-3075	传真:	86-21-5868-3076
电话:	886-2-2705-8448	传真:	886-2-2700-8430
电话:	886-4-2463-8159	传真:	886-4-2463-8160
	电电话:::::::::::::::::::::::::::::::::::	电话: 86-21-3363-2088 电话: 86-22-5817-3069 电话: 86-28-8526-6681 电话: 86-23-6757-3205 电话: 86-431-8461-7085 电话: 86-21-5868-3075 电话: 886-2-2705-8448 电话: 886-4-2463-8159	电话: 86-22-5817-3069 传真: 电话: 86-28-8526-6681 传真: 电话: 86-23-6757-3205 传真: 电话: 86-431-8461-7085 传真: 电话: 86-21-5868-3075 传真: 电话: 886-2-2705-8448 传真: